
Complex S inusoids  (Continued) For x(n) =  e j(2π/ 7)n , the  graphs  of Re{ x}  and Im{ x}  are  shown below. 
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Genera l Complex Exponentia ls  In the  most general case  of a  complex exponentia l x(n) =  can , c and a are  

both complex. 

Letting c =  |c| e jθ  and a =  |a| e jΩ where  θ and Ω are  real, and us ing 

Euler’s  re la tion, we can rewrite  x(n) as  
 

x(n) =  |c| |a|n cos(Ωn +  θ) +  j |c| |a|n sin(Ωn +  θ ) .  
  

Re 

 
x
 
(n )}  {           Im{ x(n )}  

Thus, Re{ x}  and Im{ x}  are  each the  product of a  real exponential and 

real s inusoid. 

One of several distinct modes of behavior is  exhibited by x, depending on 

the  value  of a. 

If |a| =  1, Re{ x}  and Im{ x}  are  real sinusoids. 

If |a| >  1, Re{ x}  and Im{ x}  are  each the  product of a real sinusoid and a 

growing real exponential. 

If |a| <  1, Re{ x}  and Im{ x}  are  each the  product of a real sinusoid and a 

decaying real exponential. 
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Genera l Complex Exponentia ls  (Continued) 
The various modes of behavior for Re{ x}  and Im{ x}  are  illus tra ted 

below. 

|a| >  1 |a| <  1 

|a| =  1 
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Rela t ionship Be tween Complex Exponentia ls  and Rea l S inusoids  
 
 
 
 
 
 

From Euler’s  re la tion, a  complex s inusoid can be  expressed as  the  sum of 

two real s inusoids  as  
 
 

ce jΩn =  c cos Ωn +  jc sin Ωn. 
 
 

Moreover, a  real s inusoid can be  expressed as  the  sum of two complex 

s inusoids  us ing the  identities  

c cos(Ωn +  θ ) =  
c    

2 
e j (Ωn+ θ) +  e− j (Ωn+ θ) 

l  

c sin(Ωn +  θ ) =  

and 

l  
.  

c   

2 j 
e j (Ωn+ θ) − e− j (Ωn+ θ) 

Note  that, above, we are  s imply restating results from the  (appendix) 

materia l on complex analys is. 
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Unit-S tep Sequence  

The unit-step sequence, denoted u, is  defined as  

u(n ) =  

 
1  if n ≥ 0 
 

0 otherwise . 

A plot of this  sequence  is  shown below. 
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Unit Rectangula r  Pulses  
A unit rectangular  pulse is  a  sequence  of the  form 

p(n ) =  

 
1  if a ≤ n <  b 

 

0 otherwise  

where  a and b are  integer constants  satis fying a <  b. 
 

Such a  sequence  can be  expressed in terms of the  unit-s tep sequence  as  
 
 

p(n) =  u(n − a) − u(n − b ).  
 
 

The graph of a  unit rectangular pulse  has  the  general form shown below. 
 
 

p(n) 
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Unit-Impulse  Sequence  The unit-impulse sequence (a lso known as  the  delta sequence), denoted 

δ, is  defined as  

δ(n) =  

 
1  if n =  0 
 

0 otherwise . 

The firs t-order difference  of u is  δ. That is , 
 

δ(n) =  u(n) − u(n − 1). 
 

The running sum of δ is  u. That is , 

n 

u(n) =  ∑ 
k= −∞ 

δ(k). 

A plot of δ is  shown below. 
 

δ(n) 
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Properties  of the  Unit-Impulse  Sequence  

For any sequence  x and any integer constant n0, the  following identity 

holds: 
 
 

x(n)δ(n − n0 ) =  x(n0 )δ(n − n0). 
 
 

For any sequence  x and any integer constant n0, the  following identity 

holds: 
 

∞ 

∑ 
n= −∞ 

 

 

Trivially, the  sequence  δ is  a lso even. 

x(n)δ(n − n0 ) =  x(n0). 
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Section 7.4 
 

 
 
 

Dis crete-Time (DT) Sys tems  
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DT Sys tems  
A system with input x and output y can be  described by the  equation 
 

 

y =  H { x} , 
 

 

where  H denotes  an operator (i.e., transformation). 

Note  that the  operator H maps a function to a function (not a  number to 

a  number). 
 

Alternatively, we can express  the  above rela tionship us ing the  notation 

x −→ y. 
 

If clear from the  context, the  operator H is  often omitted, yielding the  

abbreviated notation 

H 

x → y. 
 

Note  that the  symbols  “→” and “=” have  very different meanings. 

The  symbol “→” should be  read as  “produces” (not as  “equ als”). 
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Block Diagram Representa t ions  

Often, a  sys tem defined by the  operator H and having the  input x and 

output y is  represented in the  form of a  block diagram as  shown below. 
 
 

Input Output 

Sys tem 

H 

x(n) y(n) 

Version: 2016-01-25 



Inte rconnection of Sys tems  Two basic ways in which sys tems can be  interconnected are  shown below. 

Sys tem 1 

H1 

Sys tem 2 

H2 

y(n) x(n) 

Series  

Sys tem 1 

H1 

Sys tem 2 

H2 

+ 

x(n) y(n) 

Paralle l 

A ser ies (or cascade) connection ties  the  output of one  sys tem to the  input of 

the  other. 

The  overall series-connected sys tem is  described by the  equation 
 

y =  H2 
 
H1{ x }

  
.  

 

A parallel connection ties  the  inputs  of both sys tems together and sums 

their outputs. 

The  overall paralle l-connected sys tem is  described by the  equation 
 

y =  H1{ x}  +  H2 { x }.  
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Section 7.5 
 

 
 
 

Properties  of (DT) Sys tems  
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Memory and Causa lity 

A system with input x and output y is  said to have  memory if, for any 

integer n0, y(n0) depends  on x(n) for some n j=  n0. 

A system that does  not have  memory is  sa id to be  memoryless. 

Although s imple, a  memoryless  sys tem is  not very flexible, s ince  its  

current output value  cannot re ly on pas t or future  values  of the  input. 
 

A system with input x and output y is  said to be  causal if, for every integer 

n0, y(n0) does  not depend on x(n) for some n >  n0. 
 

If the  independent variable  n represents  time, a  sys tem must be  causal in 

order to be  physically realizable. 
 

Noncausal sys tems can sometimes  be  useful in practice, however, s ince  the  

independent variable  need not always represent time. For example, in some 

s ituations, the  independent variable  might represent position. 
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Invertibility The inverse of a  sys tem H is  another sys tem H −1 such that the  

combined effect of H cascaded with H −1 is  a  sys tem where  the  input 

and output are  equal. 

A sys tem is  said to be  inver tible if it has  a  corresponding inverse  sys tem 

(i.e., its  inverse  exis ts ). 

Equivalently, a  sys tem is  invertible  if its  input x can always  be  uniquely 

determined from its  output y. 

Note  that the  invertibility of a  sys tem (which involves  mappings  between 

functions) and the  invertibility of a  function (which involves  mappings  

between numbers) are  fundamentally different things. 

An invertible  sys tem will a lways  produce  distinct outputs from any two 

distinct inputs. 

To show that a  sys tem is  invertible, we s imply find the  inverse system. To 

show that a  sys tem is  not invertible, we find two distinct inputs that 

result in identical outputs. 

In practical terms, invertible  sys tems are  “nice” in the  sense  that their 

effects can be undone. 
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